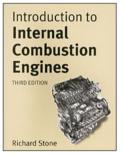


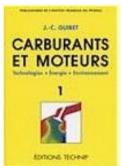
Engines – preamble

Reference books:

- A) Thermodynamique & Energétique 1, L. Borel / D. Favrat
- B) Internal Combustion Engine Fundamentals, John B. Heywood (1988)
- C) Introduction to Internal Combustion Engines, R. Stone (SAE, 2012)
- D) Carburants & moteurs (2 books), J-C Guibet (Ed. Technip, IFP)
- E) V Ganesan, IC Engines, 4th Ed. McGraw Hill, 2016

Prerequisite:


Thermodynamique & Energétique I & II (Sophia Haussener, Jan Van herle)


Contacts:

jan.vanherle@epfl.ch Hangyu.Yu@epfl.ch Martin.Gay@epfl.ch

Engines – preamble

Course support – moodle:

- Slides (ppt/pdf)
- Animation videos
- Exercises
- Video recording of lectures
- Formulae mementos (=> exam in January session)

Potential invited seminar(s) – depending on external lecturers

- Dr Jean-François Tissot (Acceleron, Baden (AG): diesel engines, turbochargers)
- Liebherr Motors (Bulle, FR)
- Dr Mardit Matian (EH Group, Nyon (VD): fuel cell mobility)
- Prof Dr David Hart (E4Tech, Lausanne : consulting studies fuel cells/electrolysis/H2)

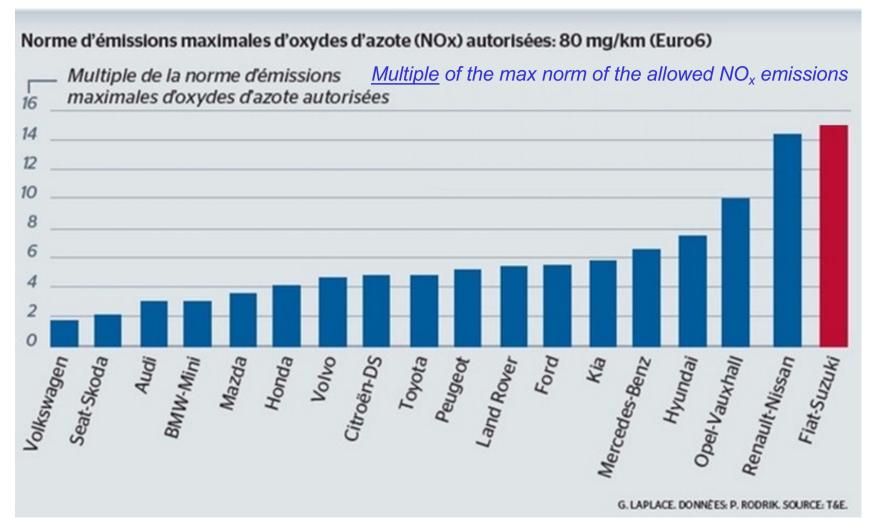
Exam:

January 2024, written (3h), 50% Engines, 50% Fuel Cells: calculation exercises. All material is allowed (open book). 60% of the final grade.

Week 10 (Nov13): theory test on Engines (45'). Closed book. 1/6th of final grade.

Week 14 (Dec18): theory test on Fuel Cells (45'). Closed book. 1/6th of final grade.

Why 'fuel cells' & 'engines in a shared course?


Differences
Engines : combustion (=>pollutants!) FC : direct electrochemical conv.
ICE cars, trucks, ships, trains
FC electric (hybrid) cars, buses, Cogeneration engines: 0.1-10 MWe
FC cogeneration units : 1-1000 kWe
Engines: mech. eng. focus FC: chem.eng + mat.sci. focus

Engines - Objectives

- Main objectives and targeted knowledge:
 - introduction to Internal Combustion Engines for <u>transport</u> and <u>cogeneration</u> applications
 - □ understand the main <u>technological</u> and methodological <u>options</u> in the <u>design</u> and <u>use</u> of internal combustion engines and <u>exhaust</u> gas treatment systems
 - □ understand the main technological challenges (trade-off)
 between mechanical, thermal, economical and environmental constraints

Source: Article «24 heures», 20.09.2016

Engines – Course content (1/2)

Week 1) Introduction to Internal Combustion Engines

Description of the main components

11 sept

- Operation principle (2 and 4-stroke, Diesel & Otto)
- Mechanical principles (incl. movies showing engine assemblies in 3D)
- Main material flows in an engine

Week 2) Thermodynamic Cycles

Reminder of thermodynamic fundamentals

18 sept

Theoretical and real cycles

Week 3) Terminology and key values

- Engine cycle representation
- Engine operating characteristics

25 Sep

- Key factors and typical relations
- Efficiency definitions (from combustion to effective mech. power)
- Full load and operating map representation

Engines – Course content (2/2)

Week 4) Compression-Ignition Engines (Cl or Diesel Engines)

Fuel properties and combustion process

2 oct

- Noise analysis and prevention
- Load regulation & supercharging
- Energy distribution

Week 5) Spark-Ignition Engines (SI or Otto Engines)

9 oct

- Fuel properties and combustion process (ignition, knock limit)
- Load regulation
- New combustion concepts (mixed systems, direct gasoline injection)

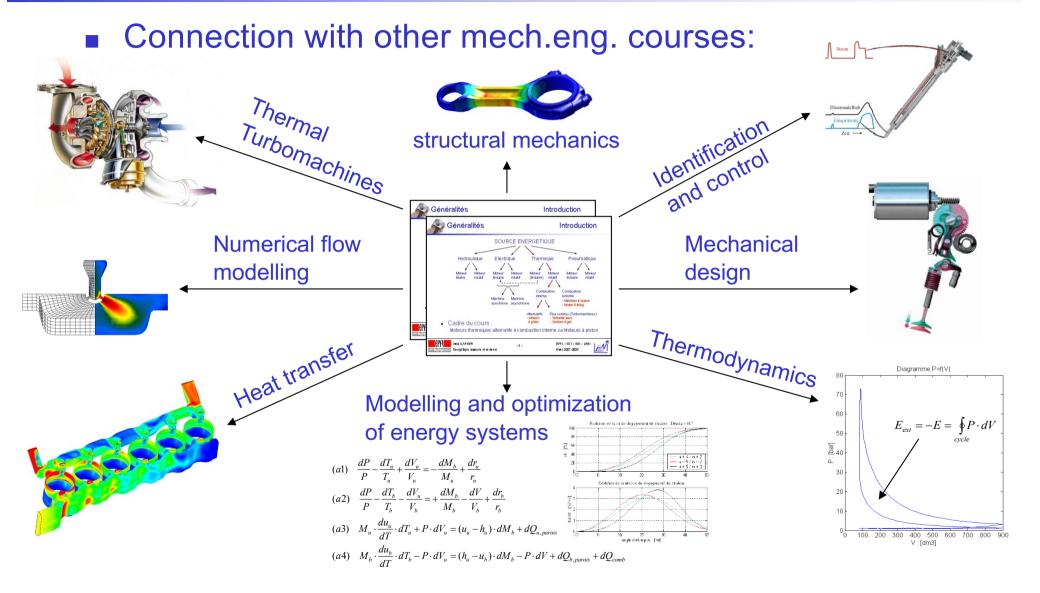
Week 6: Invited seminar Dr Jean-François Tissot, Acceleron (Turbochargers)

16 oct

Week 7) Emission treatment systems

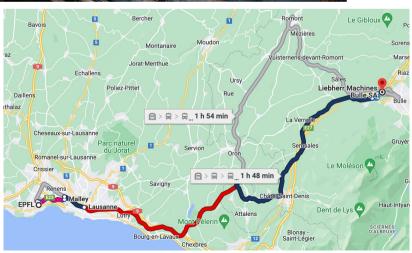
Characterization of combustion gases and origin of pollutants

30 oct


- Pollutant formation
- Emission standards (On & Off-road engines)
- <u>Upstream</u> methods and means of emissions reduction
- <u>Downstream</u> methods (3 way-cat, SCR, DPF, NOx trap)

Engines - course plan

Week	Date	Content	Hours	
			Course	Exercise
1	Sep-11	Preambel Week 1: General Introduction Exercise 0 : simple num. examples of engine parameters	2-3	(intro)
2	Sep-18	Week 2 : Themodynamic cycles Exercise 1 :Thermodynamic cycle	2	1
3	Oct-25	Week 3 : Therminology and Definitions Exercise 2 : Gas engine	2	1
4	Oct-02	Week 4 : Diesel Engines Exercise 3 : Energy and exergy balance of a Diesel engine	2	1
5	Oct-09	Week 5 : Otto Engines Exercise 4 : Idle regulation of a S.I. Engine	2	1
6	Oct-16	Week 6 : Invited lecture Dr J-F Tissot, Acceleron	2	-
7	Oct-23	Semester break		
8	Oct-30	Week 7: Emission Treatment Systems Exercise 5: Selection of a cogeneration engine	2	1
10	Nov-13	45' theoretical exam on Engines part (closed book)	1 Fuel cells	1 Fuel cells


Excursion during semester?

to Liebherr Engines factory, Bulle (FR)

https://youtu.be/yc2l0Azbgjk

Possible on Tue/Wed/Thu
Morning or afternoon
November or December
Max. 25 participants
Depends on personal interest

Past master semester projects at GEM

- 79. (JAN2020) Development of a pressure damping device for an evaporator coupled with a SOE
- 82. (JUN2020) PEFC electrochemical stack model
- 87. (JAN2022) Design exploration of a SOFC-battery hybrid supply for 50 pax electric aircraft
- 91. (JUN2022) Multi-objective optimization and economic analysis of SOFC-EV charging station
- 92. (JUN2022) Cooling strategies of a PEM fuel cell using CFD
- 96. (JUN2022) Anionic membranes screening and analysis / gas crossover
- 114. (JAN2024) Degradation analysis of single-cell accelerated stress tests via electrochemical impedance spectroscopy and distribution of relaxation time methods
- 115. (JAN2024) Minimizing Environmental Impact in Hydrogen Production Systems through Optimal Stack Module Sizing and Replacement Strategy
- 116. (JAN2024) Investigation of multiple scenarios for the exploitation of a SOFC-mGT system.
- 122. (JUN2024) Solid Oxide Electrolysers fault conditions footprint by using Electrochemical Impedance Spectroscopy (EIS) and Total Harmonic Distortion (THD)
- 123. (JUN2024) Performance and stability of metal-supported Solid Oxide Electrolysis Cells

Past master thesis projects at GEM (1)

- 48. (SEP2020) **CGN-Lausanne**, Layout of a H₂-electrical propulsion for a 1.8 MW ship
- 49. (SEP2020) Using NH₃ in SOFC for Heavy Duty Transport (*publication*)
- 50. (MAR2021) **Retrofuture-EV** (F), Integration study of an energy converter to an electric traction system in an automotive retrofit.
- 51. (MAR2021) **RUAG** (CH), Trade-off, Design and Model-Based Performance and Safety Analysis of Energy Storage Subsystems for Spacecrafts.
- 53. (MAR2021) Etude de faisabilité et conception d'un banc d'essai moteur à hydrogène
- 56. (AUG2021) **Swisshydrogen**, Development of compact FC range extender for automotive application
- 59. (JAN2022) Modeling and experimental investigation of critical conditions in reversible solid oxide cells using State-of-Health online monitoring
- 60. (JAN2022) Design and optimisation of a heat exchanger network for an integrated reversible SOFC system
- 61. (FEB2022) **Stadler**, Development of a simulation tool to optimize the design of hybrid propulsion systems on railway vehicles, and application in a case study on shunting locomotives

Past master thesis projects at GEM (2)

- 67. (AUG2022) **Michelin**, Modélisation d'une pile à combustible à membrane polymère PEMFC
- 68. (AUG2022) Engie, Thermodynamic modeling of Hydrogen Refueling Station
- 69. (SEP2022) Liebherr, THERMOMECHANICAL FATIGUE DAMAGE MODEL FOR ICE EXHAUST MANIFOLDS
- 74. (FEB2023) Two-Phase Simulation of AEM Electrolyser Flow Channels (=> Patent)
- 75. (FEB2023) MEMBRANE ELECTRODE ASSEMBLY SIMULATION OF AEMEL
- 77. (MAR2023) EH Group, Modelling and dimensioning of a PEMFC active humidifier
- 80. (AUG2023) Safran, Instrumentation de pile à combustible PEMFC
- 81. (AUG2023) Liebherr, Engine Design modelling combining Statistical Approaches and AI
- 82. (AUG2023) **Stadler**, Electrical Modelling of the Auxiliary Consumptions in Trains
- 84. (Mar2024) **Garrett**, Design of a cooling system for a FS eMotor
- 89. (AUG2024) **Neology**, Optimization of an ammonia to hydrogen generation system
- 90. (AUG2024) Beyond Aerospace, Aviation Energy Efficiency: Hybridization Strategies for Battery and Fuel Cell Systems
- 91. (AUG2024) **SolydEra**, CFD modeling and analysis of ejectors for the recirculation of fuel in a SOC system
- 93. (AUG2024) Operating strategy of SOFC system for lifespan extension and performance optimization
- 94. (AUG2024) Characterisation and analysis of PEMFC cells and stacks